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INTRODUCTION.

mqqaﬁﬂlmﬂlﬂhlﬁ“ﬂﬂh‘h—g

It is intended in this article to discuss some of the fundamental
processes of the method of least squares. No stress will be laid
upon the theory on which the method rests, but it is thought that some
profit may result from a consideration of what is really done when the
method is applied to sets of observations. It is always advisable to
get some insight into the elementary processes of any method before
proceeding to apply them to more complicated dproblems in which
1t may be difficult to visualize just what is being done to bring about
the desired end.

The problem, in general, is to determine a set of corrections to
observations, such that the sum of the squares of these corrections
is & minimum, and, at the same time, such that the observations
may be so changed as to eliminate all inconsistencies. This, of
course, is when all the observations have equal weight. On the other
hand, when the observations have unequal weights, the problem is to
make the sum of the pv* a minimum, p being the weight of the
observation. In any case we are brought back to the subject of
maxima and minima 8&s treated in an ordinary course in calculus.
However, since all the work in this bureau is carried out along the
lines of standardized forms, we often lose sight of the connection
between what we are doing and what we know about ordinary
maxima and minima. In other words, we are like the man who
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2 ©  TU. 8. COAST AND GEODETIC SURVEY.

could not see the forest for the trecs, or who could not see the city
for the houses.

The writer. has attempted to emphasize this connection between
ordinary masxims and ‘minima and the process of least squares by
. means of a few illustrative examples that are characterized by their
brevity and by their ease of presentation. No proof of whether a
maximum or a minimum is obtained is given, as it is evident which
of the two is obtained in every illustration cited.

EXAMPLE OF THE DETERMINATION OF A MAXIMUM.

Let us first determine the rectangle of the greatest area that can
be found with one corner at the origin, with the sides along the
axes, and with the opposite corner on the ellipse whose equation is

z! 2

P +3bl_’ =].

We now want to make zy a maximum subject to the condition
expressed by the equation above. We can proceed in three different
ways, and we shall now illustrate these methods.

Method 1. COMPLETE DIFFERENTIATION.

We first differentiate completely the function to be made & maxi-

mum and set it equal to zero, and then differentiate the equation of
condition and eliminate either dz or dy from these equations.

zdy + ydx =0,
Sz + fidy =0,
From the first equation we get
a:dy == ydz,
or
=Y
dy zdz.

By substituting this value in the second equation we have
. z _ y2 -
= =0

or

z

a—, = bz .
Substituting this in the equation of condition we get

2



SOME ELEMENTARY EXAMPLES OF LEAST SQUARES. 3
Methed 1. INDEPENDENT UNKNOWNS.

As a second method we can eliminate either z or y from the function
zy by substituting its value from the equation of condition

y=dya==

a

U =% zJa?—z.

Differentiate this function with respect to z and set the result equal
to zero.
b 2

b
a-\/a’—z’—;m=0.

Dividing by % and clearing of fractions we get

This gives us the function

a‘—z'—z =0,
or

2r* =ad.
Therefore,
_a
)
and

ot
V2
Method II. LAGRARGIAN MULTIPLIERS,

The third method is probably of most interest to us because it
introduces the Lagrangian multiplier, which is the basis of our
}nethgd of correlates in our least-squares work. Let us take the
unction

U=zy+ 0(£;+%;— 1)-

We may now equate %;U and g—g each separately equal to zero and

then solve these resulting equations for €. This gives us the two
equations from which C results as below:



4 U. 8. COAST AND GEODETIC SURVEY.

Therefore,

and as a result

z=-2, and -—b—-
ik A

zy =%§ as before.

EXAMPLE OF THE DETERMINATION OF A MINIMUM WITH ONE
CONDITION.

Now let us make z°+%° a minimum subject to the condition
z+y=a. This amounts to determining the square of the length of
the perpendicular from the origin upon the line z+y=q; and if
z and y are allowed to vary after the determination, we shall have.
a circle with center at the origin and tangent to the given line. In
this problem also we can proceed in any one of the three ways.

Method 1. COMPLETE DIFFERENTIATION.
zdx +ydy =0,
dz+dy =0,
—zdy+ydy =0,

z=y,
a
T= 2= ¥
2
Py =T
Metbod II. INDEPERDENT UNKNOWHS.'

y=a—2z,

U=+ (a~2),

%;U=a:— (a—z) =0,

[T

2 z<a,

=2
z 2v
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Method IIl. LAGRANGIAN MULTIPLIERS.
U=2,+y,—2C@+y—a).

—2C is used for the Lagrangian multiplier for convenience.

3
ﬁ+¢=%-

EXAMPLE OF THE DETERMINATION OF A MINIMUM WITH TWO
CONDITIONS.

Now let us make z?+¥* a minimum subject to the two conditions
z+y=a and z=>b. This is equivalent to determining the square of
the line joining the origin and the intersection of the two lines, or
with z and y variable it becomes the circle with center at the orgin
which passes through the intersection of the lines z+y =a and z=b.
As a matter of fact, we have enough elements to determine the problem

at once; that is,
D+ =(a—b)*+b.
Method INI. LAGRANGIAN MULTIPLIERS.
We shall apply the third method, that of Lagrangian multipliers,
U=z?+y2—-2C(z+y—a)—2C(z~b),

%%—g=z— 01— 02 =0,
$=0|+ 09

%g=y— G =0,

[ ST

y=01
Fromz+y—a =0 we get

20|+ 02—G =0,

- and from z—b =0 we get
0|+Ca'-b'=0.



6 U. 8. COAST AND GEODETIC SURVEY.
These are really normal equations that we can solve for G and G,.
Ci=a—b,
C,=2b—a,
Therefore z=C+Cy=),
y=0C=a-b,
2+yP=(a—-d)P+d
RELATION BETWEEN LEAST SQUARES AND ARITHMETIC MEAN.
Let us now apply the method of least squares to the measurement
of a single quantity and show that the result gives us the arithmetic
mean. Let us take the following five values of a measurement:
18.21,
18.19,
18.30,
18.25,
18.20.
T lf:;lt: M be the value after the adjustment.
M—-1821=y,
M—18.19 =0,
M—-18.30=up,,
M~-18.25=y,,
M-18.20=y,,
U=0+0’+0+0'+ 0!

=-(M-18.21)+ (M—18.19)*+ (M —18.30)*+ (M - 18.25)*
+ (M—18.20)%. .

%g%- M~18.21+ M—18.19+ M—18.30+ M—18.25+ M—18.20=0.

5M=91.15,
M=18.23.

It will be seen that this is the arithmetic mean of the five obsurva-
tions.
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LEAST SQUARES APPLIED TO OBSERVATIONS WITH TWO
CONDITIONS.

In most problems that we have to solve we have the choice of using

either observation equations or condition equations. Sometimes the
one method is the more direct and sometimes the other. To illus-
trate the matter, let us take a short problem. Let us suppose that
a length is measured as a whole, and then the same length is measured
in two parts and again in two different parts.

Full length, 201.71 +y,,
7581 +v,

125.22 + vy,
100.03 + 2,

100.76 + vs.
METHOD OF OBSERVATION EQUATIONS,

First sot of part measuremen t,sl

Second set of part measurementsl

Assume the approximate values

201 +&,,

76+,

100 +2;.
o, =x,—0.71,
v,=2,+0.19,

v, =%, —%;— 0.22, } Observation equations.

v4=33—0-03,

05 =%, — 23+ 0.24.J

U= (zl —0-71)2'*' (::2+ 0.19)2'*' (zj —Z— 0-22)2+ (z;g- 003)’
+ (@, —x3+0.24 )%,

10U

' g %, =2 =0.71+2; =2, — 0.22+2;— 23+ 0.24 =0
or
3z, —2y—x;—0.69=0,

3 S =2+ 01921 +5,+0.22=0,

or
—2,+22,+0.41 =0,

%%q,—o.os —2,+2,—0.24 =0,

or

=2+ 22,—0.27=0.
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We thus have the three normal equations,
3~z —z;= +0.69,
-1+ 25, = —041,
-z, + 27 = +0.27

From the second of these equations we get

T=3(m—0.41),
and from the third
' 2 =@ +0.27).

By substituting these values in the first normal and solving for z; -
we can get the values of the three z’s, - '

30— 50— 0.41) ~ 55 +0.27) =0.69,

6z, —2;4+0.41—2,—-0.27 =1.38.
4r, =1.24,

z, =+0.31,

2, =—0.05,

z;=-+0.29.

With these values the s result at once from the observation
equations.
0 =—040,
v, =+0.14,
0, =-+0.14,
O = + 0-26,
O = + 0.26.
METHOD OF CONDITION EQUATIONS WITH USE OF CORRELATES.

This same problem could be solved by equations of condition. It
is evident that the following two equations must be true:

201.71+9,— (75.81 + 0, + 125.22 + 1) =0,

201.71 4+ 9, — (100.03 + v+ 100.76 + v5) =0.
or

01— 0,—0,+0.68 =0,
and

01— 0,— 05+ 0.92 =0,
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By correlates we have

U=o+ o+ 0 +02 40— 20 (0, — % — 15 +0.68)

=2C,(0, =0, ~v;+0.92).
1Z0-0-G-0, w=G+G.
%%=vg+0‘=0, &=-C.
%%U;=v.+0,=0, n=—0C:.
%%g=v.+0,=0, o= =0
%g—g;=v.+0,=0, v=—0,.

By substituting these values in the condition equations we get the .
two normal equations )
30+ Gy=—0.68,
C,+30,=—0.92.
Solving these we obtain C, and C,.
90\ +30C;=—2.04,
C+3C;=-0.92,
8C=—1.12,
C,i=-0.14,

C=-0.28.
Therefore, as before.
o= —0.40,

9= +0.14,
r=+0.14,
v, = +0.26,
o= +0.28.
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METHOD OF CONDITION EQUATIORS WITH INDEPENDENT URKNOWNS.

We can take the same two equations and apply least squares by
. the method of independent unknowns,

ty=+0,—0,+0.68,
05 =+v,—v,+0.92.
U=0+v’+ (0,—1,+0.68)"+ 0.+ (1 — 0, +0.92)%,

100 ot oi—034+0.68 40— 0,+0.92 =0,
2 al’l
or
30,— 1, — 0, + 1.60 =0.
120 .
E-sz—vz—vl+03—0.68=o,
or
bt /1 +2vz—0.68 =0.
10
3 57‘=04—0|+04_0.92 =0,
or _

- +29,—0.92 =0.

From the second equation we have

=1 (0,+0.68),
and from the third
9= %(vl +0.92).

By substituting these values in the first equation and solving for o
we get o

80~ 5 (0 +0.68)— 3 (0, +0.92) + 1.60 =0,
6y, fol—0.68—v.—0.92+3.20 =0,
4y, =—1.60,
o =—0.40.
The other ¢'s follow from their equations.
9 =+0.14,
 oy=+0.14,
9, = +0.26,
03 =+ 0.26.
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METHOD OF CONDITION EQUATIONS WITH COMPLETE DIFFERENTIATION.
We have the third possibility in that we may take the function
U=v’+0l+02+02+0,
and the equations of condition

n—0—t=—0.68,
and
=9 —U= —0.92,

and differentiate them completely as they stand and equate the com-
plete derivative of the sum of the squares to zero.

;—,d U=vdv, + 0,40, + 0ydvs + 0, dv, + vydvy = 0,

dv,—dy—dn, =0,
dﬂl - dv‘ - dvg =0.
From the last two equations we get

dv, = +dv, —dp,,
and
- dyvy =dy, — do,.
By substituting these values in the first equation we get
0,39, + vodvy +05 (+ dvy — dvg) + 0, dv, + v(+ dv, — do,) = 0.
After rearrangement this becomes
(01 + 03+ 05)d0y + (02— v3)dvy + (9, — v5)dv = 0.
Since dp,, o, and dy, are arbitrary, the coefficients must be zero to

satisfy the equation if the equation is to be identically satisfied for
any values of the dv’s. .

Therefore,
0+t U5 = 0,
6—13=0,
and
0 —U= 0.

These equations, taken with the equations of condition,
0, —vg— 0y~ —0.68,
0 —0,— 0= —0.92,

give the five equations necessary for the solution.
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By solving as follows the values of the ¢’s are obtained:
' v =10y
Uy =14,
0 +t,+0,=0,
0, —2v,= —0. 68,
0 —29,=—0.92,

1
Og= § (‘D[ +0. 68),

o0 =% (2, +0. 92),

20,+v,+0.68+2,+0.92=0,
4v,= -1. 60,
n=-—0. 40,

= +0. 14,
n=+0.14,
v,=+0. 26,
1= +0. 26.

LEAST SQUARES APPLIED TO OBSERVATIONS OF DIFFERENT
WEIGHT WITH TWO CONDITIONS.

As an illustration of weighting, let us take the same problem and
assign the weights 2, 1, 3, 2, 1 to the observations.

METHOD OF OBSERVATION EQUATIONS.
The function then becomes, _
U=20+v2+ 302+ 202+ 0,2

=2(z;—0.71)*+ (z;+0. 19)*+ 3 (x; —2,—0. 22)*+2 (z;,—0. 03)*
+ (2 —x3+0. 24)2.

1M=%,—1.42+3z;—3z3—0- 66 +z;,—z, 0. 24,
2 oz,
or '
62, — s —z3=+1. 84.
%%g;=z,+0_ 19 —3x,+ 32, +0. 66 =0.
or
-3z, +4z,= —0. 85.
100
E&—ab‘-o- 06—21+z‘-0. 24=0|
or

—z,+ 32, = +0. 30.
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The three normal equations are now as follows:
6x; — 3x,—x3= +1. 84,
=3z, + 42, = —0. 85,
-z, +3x,=+0. 30.

: By solving these equations as given below we can get the values of
thez's:

2,32~ 0. 85),
2=, +0. 30),
B2, —>(32, - 0. 85) — 3 (& +0. 30) = + 1. 84,

722,272, + 7. 65— 4z, — 1. 20 = + 22, 08,
41z, = +15. 63,

Oy = +0. 38,
;= +0. 07,
T3 = +0, 23,

With these values the v's may be computed from the observation
equations on page 7.
n=—0. 33,
v,= +0. 26,
v3=+0. 09,
v,=+0. 20,
vs= +0. 39.
METHOD OF CONDITION EQUATIONS.
With the condition equations we proceed as follows:
U=292+722+30+ 202 + 02— 2C, (0 — 2, — 3+ 0. 68) —2C3(; ~ 0,
—-p;+0. 92),
20=0+ G,
n=—0,
3n=-0,
20,=—C,,

5= — 0..
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By substituting these values in the equations of condition we get
3(Gi+ G+ G+ 30 +0.68=0,

or .
%0, +§02 = _0.68,
and
| 5(G+G)+ 301+ G +0.92 =0,
or

%C’. +2C,=—0.92.

When these equations are cleared of fractions, we have
116,+ 30, = —4.08,

Ci+4C;=—1.84.
Wae sgolve these two equations for C; and C;, as follows:
Ci=—-40C,—1.84,
—440,—20.24+30,=—4.08,
—41C,=+16.16,
C,=—0.394,
C =-0.264.

The v's may now be computed from their values expressed in terms

of the Os. . '
v =-—0.33,

v, =+0.26,
0 = +0.09,
v, =+0.20,
95 = +0.39.
SOLUTION OF SIMULTANEOUS EQUATIONS BY LEAST SQUARES.

It is interesting to note that a set of any number of linear simul-
taneous equations can be solved by the method of least squares either
by means of correlates or by setting each equation equal to a v and

en by treating them as observation equations. We have already
illustrated the method of correlates when we made z*+%*® & minimum
subject to the conditions z+y=a and z=b. Of course, we get the
same number of linear equations that we had at first, but they are
symmetrical and can be solved as ordinary normal equations, which
is an advantage when the number of equations is large.

We shall now illustrate with two equations by means of observation
equations.

and
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METHOD OF OBSERVATION BEQUATIONS.
2+ =3,
_ 23: +y=4.
Equate each expression to a v instead of zero.
z+y—3=n,
2+y—4=0n,
U=02+1v
=(x+y—3)+(2z+y—4N.

D) e
8l

=z+y—3+4x+2y—8 =0,

or
5a:+3y==11.

&3

=z+y—3+2+y—4=0,

O] e

or
3z+2y =7.

We now solve these two equations for z and y.
9z + 6y =21,
10z+ 6y =22,
z=1,
2y =4,
y=2.
METHOD OF CONDITION EQUATIONS WITH USE OF CORRELATES.

As a final examgle we shall solve three simultaneous linear equa-
tions in z, y, and 2 by the method of correlates. In geometrical terms
this will really determine the square upon the line joining the origin
to the point of intersection of the three planes represented by the three
linear equations. After solution with variable z, y, and z we shall
have a sphere with center at the origin and passing tfn'ough the point
of intersection of the three planes.

Let us take the three equations,

z+y+z=6,
2—y+z=3,
&Z—2y—2=—4.
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To show more clearly the basis of the correlate multipliers, we shall
differentiate the function z?+ 3+ 2? completely and equate the result
to zero, and so also for each of the three equations. this way we
get the four equations:

zdx + ydy + 2dz=0,
dz+dy+dz=0,
2dz—dy+dz=0,
_ 3dz—2dy—dz=0.
Let us now multiply the second equation by €, the third equation

bg' 0., and the fourth equation by C; and then subtract the sum of
these three products from the first equation. The result is:

(Z"' 0;"20,—303)dz+ (y"' 01+ 03+20;)dy+ (z_ 01— 01+C;)d2=0.

We can now determine the C’s by equating the coefficients of dz,
dy, and dz, respectively, to zero. We then have,

z—(,—20,—-3C;=0,
y— 0+ C:+2Cs=0,
2~ 0,— 0+ 0,=0,
z=0,+20,+30C,,
y=0,—C;—-2G,,
z2=0+C,— G,

When these values are substituted in the three original equations,
we get the three normal equations,

301+202=6,
20,+6C;+70;,=3,
70,+14Cy= —4.

or

If these three equations are solved for the C’s, we get

01 -t 179'1

C= +g-l

0;" —g'
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By substituting these values in the expressions for z, y, and 2, in
terms of the C’s, we get

z2=3.
D+yr+2=14.
CONCLUSION.

Therefore,

In applying the method of least squares to extensive sets of obser-
vations it is necessary to make use of tabulations, and it is not so
easy to ses the various steps of the process. From these few illus-
trative easy examples it should be evident how the result desired is
obtained. For this reason it is well to give some thought to the proper
understanding of these elementary steps, and later the more compli-
cated adjustments will cease to be mysterious. The rational process
is present however much it may appear to be obscured. It is hoped
that the preceding examples will be of aid to clear and careful think-
ing in the application of the method of least squares.
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